Родителям

Детям

Беременность и роды

Ребенок

Дом

Благо

Постеры, фото, обои

Детская библиотека

О женском

Праздники

Справочная


Таблица прикорма 
4 правила введения прикорма 
Свободное искусственное вскармливание 
Смешанное вскармливание 
Техника и правила искусственного вскармливания 
Искусственное вскармливание 
Несколько советов кормящим мамам 
Как сделать грудное вскармливание успешным: несколько простых правил. 
Кормить по требованию ребенка. Что это такое? 
Полный свод мифов и заблуждений о грудном вскармливании 
Мягкое расставание - как отучить ребенка от груди 
ПЕРВЫЙ ГОД / Прикорм. Рекомендации ВОЗ по грудному вскармливанию. 
Как и когда вводить прикорм ребенку на исключительном грудном вскармливании? 
Первый прикорм – с чего и когда начать? 
Прикорм для грудничка. Часть 1 
Прикорм для грудничка. Часть 2 
Прикорм для грудничка. Часть 3 
Прикорм для детей на ГВ 
Введение прикорма 
Пюре для детей от 5 месяцев 
Врач советует начать прикорм с сока? Ищите другого доктора. 
Коровье молоко и глютен увеличивает вероятность заболевания бронхиальной астмой и диабетом. 

 

Фото узи аппарат


Что такое УЗИ аппарат?

УЗИ аппарат с помощью высокочастотных звуковых волн позволяет врачам проводить визуальную диагностику человеческого организма. Частота волн 2 — 10 МГц. Пациент способен воспринимать частоту, не превышающую 20 кГц.

Составные элементы

Современные УЗИ сканеры выполнены из нескольких элементов:

  • CPU, процессор — в нем расположены источники питания, и он выполняет все расчеты;
  • датчик ультразвуковой — получает и передает звуковые волны, преобразуя их;
  • дисплей — необходим для демонстрации картинки, получаемой в процессе обследования;
  • датчик управления — меняет характеристики импульсов, которые поступают на ультразвуковой преобразователь;
  • жесткий диск — место хранения полученных при обследовании изображений;
  • курсор и клавиатура — применяются для ввода данных;
  • принтер — предназначен для распечатки изображений.

Центральный элемент УЗИ оборудования — ультразвуковой преобразователь, который функционирует по принципу пьезоэлектрического эффекта. В преобразователе несколько пьезоэлектрических кристаллов из кварца. Под воздействием электричества кварцевые кристаллы вибрируют, меняют форму и способствуют образованию и распространению ультразвукового сигнала. В обратном порядке они могут вырабатывать ток под воздействием звуковых волн.

Датчик дополнительно оснащен слоем для поглощения звука. Форма и размер преобразователя могут быть любые. От 1-го параметра зависит поле зрения аппарата, а получаемая картинка и глубина, на которую проникает импульс, зависят от его частоты.

Вернуться к оглавлению

Квалифицированный врач должен знать, как работает УЗИ. Оборудование передает импульсы с частотой 1 — 18 МГц с помощью преобразователя ультразвука в тело обследуемого пациента. Источаемые аппаратом сигналы распространяются по телу к границе между разными тканями. Волны частично отражаются обратно, а остальные продолжают движение в теле.

Отраженные сигналы поступают на датчик, а затем в центральный процессор, который обрабатывает их и выдает картинку на дисплей. Расстояние между органами или тканями и преобразователем определяется с помощью скорости распространения звука и времени, которое потребовалось отраженным волнам, чтобы вернуться в датчик.

Врач, управляя преобразователем, при необходимости меняет частоту передаваемого сигнала, его длительность и режим сканирования. Современный прибор функционирует в нескольких режимах. Основные — A, B, D, M, CFI, CWD, PW, TD.

A, amplitude: на экран осциллографа поступает амплитуда эхо — сигнала. Есть во всех аппаратах для УЗИ, используется в офтальмологии.

B, brightness, 2D: простой и информативный. Амплитуда эхо — сигнала отображается на дисплее двухмерным полутоновым изображением. Оборудование использует 256 оттенков серого цвета, чтобы отобразить малейшие изменения в эхогенности. Скорость обновления кадров — 20 / мин. Используется для обследования сердечных камер, клапанов и желудочков.

D, УЗИ с доплером: работает, основываясь на эффекте Доплера. Частота меняется от движения источника звука по отношению к датчику.

M, motion: передает на дисплей картинку структур сердца в движении. Позволяет точно оценивать быстрое движение за счет высокой частоты дискретизации.

Вернуться к оглавлению

CFI, colour flow doppler imaging, цветной доплер: позволяет определить скорость и направление кровотока благодаря локализации кровеносных сосудов внутри сердечных камер. Кровоток, движущийся по направлению к преобразователю, отображается на мониторе красным цветом, а движущийся в обратную сторону — синим. Черным цветом окрашены протоки, перпендикулярные плоскости исследования. Зеленый и белый цвета — для обозначения турбулентного кровотока. Современный прибор позволяет настроить цвета по своему усмотрению.

CWD, Continuous Wave Doppler, постоянно-волновой доплер: датчик одновременно передает и принимает сигнал и точно определяет высокоскоростные потоки. Минус — не может точно локализовать сигнал.

PW, Pulsed Wave Doppler, импульсно-волновой доплер: визуализирует турбулентный и ламинарный кровотоки. Направление и скорость определяет с большей точностью, чем цветной доплер. Помогает оценить характер кровотока на определенном участке. Недостаток — неточность в определении высокоскоростных потоков.

TD, Tissue Doppler, тканевый доплер: измеряет скорость движения тканей и сократительную способность миокарда.

Современный аппарат УЗИ оснащен режимами, которые повышают качество передаваемого изображения: THI, PD, 3D и 4D.

THI, Tissue Harmonic Imaging: способствует улучшению качества картинки. Применяется чаще всего при обследовании пациентов с лишним весом.

PD, Power Doppler, энергетический доплер: высокочувствительный режим, который используется при обследовании мелких сосудов. Недостаток — не определяет направление кровотока.

3D: позволяет получить трехмерную картинку.

4D, real-time 3D ultrasound: формирует изображение из 3D-картинок, сформированных на основе 2D-картинок. Врач наблюдает за изменением трехмерного изображения во времени.

Вернуться к оглавлению

Обследование при помощи ультразвука успешно применяется в медицине. Врач должен знать принцип работы устройства для проведения качественного и точного обследования пациента. Сканеры отличаются в зависимости от назначения и сферы использования. Небольшой каталог с описанием особенностей работы помогает определиться с выбором:

  • портативные УЗИ — позволяют выполнять обследование в любом месте. Удобный переносной вариант для выездов на дом к пациентам для проведения диагностики;
  • стационарные УЗИ — используются в специализированных кабинетах медицинских учреждений;
  • оборудованные доплером — позволяют медикам видеть картинку и оценивать характер кровотока;
  • универсальные — передают на монитор двухмерную черно-белую картинку;
  • ветеринарные — оснащены специальными датчиками для проведения обследований всех видов животных;
  • специализированные — сфера применения зависит от вида преобразователя, которым оснащен аппарат. На рынке представлены аппараты для абдоминальной, акушерско-гинекологической, эндоскопической, офтальмологической и другой диагностики.

Оборудование для УЗИ классифицируют по тактовой рабочей частоте датчика. От этого зависит сфера использования прибора. Универсальные и кардио исследования требуют частоты 3, 5 МГц; осмотр органов, которые глубоко расположены — 2, 5 МГц; органов, расположенных близко к поверхности — 7, 5 МГц; диагностика детского организма или исследование внутриполостных органов — 5,0 -7, 5 МГц;

Прежде чем выбрать оборудование, необходимо определиться с типом датчика:

  1. Конвексные.
  2. Сверхвысокоплотные линейные.
  3. Фазированные и секторные механические.

По сфере использования различают следующее ультразвуковое оборудование:

  • кардио;
  • универсальные;
  • биопсийные;
  • педиатрические;
  • офтальмологические;
  • внутриполостные и другие.

При выборе прибора учитывается качество передаваемого изображения, сфера применения, особенности преобразователя, ПО, конструкции и размер монитора.

Оцените статью:

1 голосов, в среднем: 5,00 из 5 Загрузка...

1pouzi.ru

Ультразвуковое исследование: показания к диагностическому исследованию, виды УЗИ-диагностики различных органов, особенности 3D и 4D УЗИ.

Ультразвуковое исследование (сонография) – это один из наиболее современных, информативных  и доступных методов инструментальной диагностики. Несомненным преимуществом УЗИ является его неинвазивность, т. е. в процессе исследования на кожу и другие ткани не оказывается повреждающего механического воздействия. Диагностика не связана с болевыми или иными неприятными для пациента ощущениями. В отличие от широко распространенной рентгенографии, при УЗИ не используются опасные для организма излучения.

Оглавление: Принцип действия и физические основы Исследование отдельных органов УЗИ сердца УЗИ органов брюшной полости УЗИ почек УЗИ щитовидной железы УЗИ органов малого таза УЗИ молочных желез УЗИ при беременности Опасно ли УЗИ? Ультразвуковое исследование с применением технологий 3D и 4D

Принцип действия и физические основы

Сонография дает возможность выявить малейшие изменения в органах и застать болезнь на той стадии, когда клиническая симптоматика еще не развилась. Как следствие, у больного, своевременно прошедшего УЗИ, многократно повышаются шансы на полное выздоровление.

Обратите внимание: первые успешные исследования пациентов с помощью ультразвука были проведены в середине пятидесятых годов прошлого столетия. Ранее данный принцип использовался в военных сонарах для обнаружения подводных объектов.

Для изучения внутренних органов применяются звуковые волны сверхвысокой частоты – ультразвук. Поскольку «картинка» выводится на экран в режиме реального времени, это дает возможность отслеживать ряд динамических процессов, происходящих в организме, в частности – движение крови в сосудах.

С точки зрения физики ультразвуковое исследование базируется на пьезоэлектрическом эффекте. В качестве пьезоэлементов, которые попеременно работают в качестве передатчика и приемника сигнала, используются монокристаллы кварцы или титаната бария. При воздействии на них высокочастотных звуковых колебаний на поверхности возникают заряды, а при подаче на кристаллы тока – механические вибрации, сопровождающиеся излучением ультразвука. Колебания обусловлены стремительным изменением формы монокристаллов.

Пьезоэлементы-трансдюсеры являются базовой составляющей диагностических аппаратов. Они представляют собой основу датчиков, в которых помимо кристаллов предусмотрен особый звукопоглощающий фильтр волн и акустическая линза для фокусировки прибора на нужной волне.

Важно: базовой характеристикой исследуемой среды является ее акустический импеданс, т. е. степень сопротивления ультразвуку.

По мере достижения границы зон с разным импедансом волновой пучок сильно меняется. Часть волн продолжает движение в определенном ранее направлении, а часть – отражается. От разницы показателей сопротивления двух соседних сред зависит коэффициент отражения. Абсолютным отражателем является область, пограничная между человеческим телом и воздухом. В обратном направлении от этой границы раздела уходит 99,9 % волн.

При изучении кровотока применяется более современная и глубокая методика, базирующаяся на эффекте Допплера. Эффект основан на том, что при движении приемника и среды друг относительно друга меняется частота сигнала. Сочетание исходящих от прибора и отраженных сигналов создает биения, которые выслушиваются при помощи акустических динамиков. Допплеровское исследование дает возможность установить скорость перемещения границы зон различной плотности, т. е. в данном случае — определить скорость движения жидкости (крови). Методика практически незаменима для объективной оценки состояния кровеносной системы пациента.

Все изображения передаются с датчиков на монитор. Полученную картинку в режиме можно записать на цифровой носитель или распечатать на принтере для более детального исследования.

Исследование отдельных органов

УЗИ сердца

Для исследования сердца и сосудов применяется такая разновидность УЗИ, как эхокардиография. В сочетании с оценкой состояния кровотока посредством допплерографии методика позволяет выявить изменения со стороны сердечных клапанов, установить размеры желудочков и предсердий, а также патологическое изменение толщины и строения миокарда (сердечной мышцы). В ходе диагностики можно также исследовать участки венечных артерий.

Уровень сужения просвета сосудов позволяет выявить постоянноволновая допплерография.

Насосная функция оценивается с помощью импульсного допплеровского исследования.

Регургитацию (движение крови через клапаны в направлении, обратном физиологическому) можно выявить посредством цветного допплеровского картирования.

Эхокардиография помогает диагностировать такие серьезные патологии, как скрытая форма ревматизма и ИБС, а также выявить новообразования. Противопоказаний к данной диагностической процедуре нет. При наличии диагностированных хронических патологий сердечно-сосудистой системы целесообразно проходить эхокардиографию не реже одного раза в год.

 

УЗИ органов брюшной полости

УЗИ брюшной полости применяется для оценки состояния печени, желчного пузыря, селезенки, магистральных сосудов (в частности – брюшной аорты) и почек.

Обратите внимание: для УЗИ брюшной полости и малого таза оптимальной является частота в диапазоне от 2,5 до 3,5 МГц. 

УЗИ  почек

УЗИ почек позволяет выявить кистозные новообразования, расширение почечной лоханки и наличие конкрементов (камней). Данное исследование почек обязательно проводится при гипертонической болезни.

УЗИ щитовидной железы

УЗИ щитовидной железы показано при увеличении этого органа и появлении узелковых новообразований, а также если имеют место дискомфорт или боли в области шеи. В обязательном порядке данное исследование назначается всем жителям экологически неблагополучных районов и областей, а также регионов, где в питьевой воде низок уровень содержания йода.

УЗИ органов малого таза

УЗИ малого таза необходимо для оценки состояния органов женской репродуктивной системы (матки и яичников). Диагностика позволяет в том числе выявить беременность на ранних сроках. У мужчин метод дает возможность выявить патологические изменения со стороны предстательной железы.

УЗИ молочных желез

УЗИ молочных желез применяется для установления характера новообразований в области груди.

Обратите внимание: для обеспечения максимально плотного контакта датчика с поверхностью тела, на кожу пациента перед началом исследования наносят особый гель, в состав которого в частности входят стироловые соединения и глицерин.

УЗИ при беременности
Рекомендуем прочитать:  УЗИ при беременности: суть исследования и показания к его выполнению

Ультразвуковое сканирование в настоящее время широко применяется в акушерстве и перинатальной диагностике, т. е. для исследования плода на разных сроках беременности. Оно позволяет выявить наличие патологий развития будущего ребенка.

Важно: в период беременности плановое обследование с помощью ультразвука настоятельно рекомендуется пройти как минимум трижды. Оптимальные сроки, не которых может быть получен максимум полезной информации — 10-12, 20-24 и 32-37 недель.

На УЗИ акушер-гинеколог может выявить следующие аномалии развития:

  • незаращение твердого неба («волчья пасть»);
  • гипотрофию (недоразвитие плода);
  • многоводие и маловодие (ненормальный объем амниотической жидкости);
  • предлежание плаценты.

Важно: в ряде случаев исследование позволяет выявить угрозу выкидыша. Это дает возможность своевременно поместить женщину в стационар «на сохранение», дав возможность благополучно выносить малыша.

Без УЗИ достаточно проблематично обойтись при диагностике многоплодной беременности и определении положения плода.

Опасно ли УЗИ?

Согласно докладу Всемирной организации здравоохранения, при подготовке которого использовались данные, полученные в ведущих клиниках мира на протяжении многих лет, УЗИ считается абсолютно безопасным для пациента методом исследования.

Обратите внимание: неразличимые для органов слуха человека ультразвуковые волны не являются чем-то чужеродным.  Они присутствуют даже в шуме моря и ветра, а для некоторых видов животных являются единственным средством общения.

Вопреки опасениям многих будущих матерей, ультразвуковые волны не причиняют вреда даже ребенку в период внутриутробного развития, то есть УЗИ при беременности не опасно. Тем не менее, для применения данной диагностической процедуры должны иметься определенные показания.

Ультразвуковое исследование с применением технологий 3D и 4D

Стандартное УЗ-исследование осуществляется в двухмерном режиме (2D), то есть на монитор выводится изображение исследуемого органа только в двух плоскостях (условно говоря, можно увидеть длину и ширину). Современные технологии дали возможность добавить глубину, т.е. третье измерение. Благодаря этому получают объемное (3D) изображение исследуемого объекта.

Аппаратура для трехмерного УЗИ дает цветное изображение, что немаловажно при диагностике некоторых патологий. Мощность и интенсивность ультразвука такая же, как и у обычных 2D-приборов, поэтому о каком-то риске для здоровья пациента говорить не приходится. По сути, единственным минусом 3D УЗИ является то, что на стандартную процедуру уходит не 10-15 минут, а до 50.

Наиболее широко 3D-УЗИ сейчас применяется для исследования плода в утробе матери. Многие родители хотят посмотреть на лицо малыша еще до его рождения, а на обычной двухмерной черно-белой картинке разглядеть что-то может только специалист.

Но нельзя считать осмотр лица ребенка обычной прихотью; объемное изображение позволяет различить аномалии строения челюстно-лицевой области плода, которые нередко свидетельствуют о тяжелых (в том числе – генетически обусловленных) заболеваниях. Данные, полученные при УЗИ, в ряде случаев могут стать одним из оснований для принятия решения о прерывании беременности.

Важно: нужно учесть, что даже объемное изображение не даст полезной информации, если ребенок развернулся спиной к датчику.

К сожалению, пока только обычное двухмерное УЗИ может дать специалисту нужную информацию о состоянии внутренних органов эмбриона, поэтому 3D-исследование может рассматриваться только в качестве дополнительного диагностического метода.

Наиболее «продвинутой» технологией является ультразвуковое исследование в 4D. Теперь к трем пространственным измерениям добавлено время. Благодаря этому, можно получить объемное изображение в динамике, что позволяет, например, посмотреть на изменение мимики еще не рожденного ребенка.

На ранних сроках беременности (практически весь первый триместр) 3D и 4D изображения могут представлять исключительно узкопрофессиональный интерес для диагноста. Выявить реальные нарушения внутриутробного развития ребенка становится возможным, начиная с 20-24 недели.

Одним из плюсов 3D и 4D является то, что на достоверность данных никак не влияет процесс газообразования в кишечнике, а сама процедура может проводиться при любой степени наполненности мочевого пузыря.

Конев Александр, терапевт

13,573 просмотров всего, 1 просмотров сегодня

(36 голос., средний: 4,40 из 5) Загрузка...

okeydoc.ru

Основные виды узи датчиков

Конвексный датчик

Частота 2-7,5, глубина до 25 см. Ширина изображение на несколько сантиметров больше размера самого датчиков. Обязательно нужно учитывать эту особенность при определении точных анатомических ориентиров. Датчики такого типа используют для сканирования глубоко расположенных органов, таких как: тазобедренные суставы, мочеполовая система, брюшная полость. В зависимости от комплекции пациента устанавливается нужная частота.

Микроконвексный датчик

Это разновидность конвексного датчика, который используется в педиатрии. При помощи этого датчика проводятся те же исследования, что и конвексным датчиком.

Секторный датчик

Рабочая частота 1,5-5 МГц. Применяется в ситуациях, требующих получить большой обзор на глубине с небольшого участка. Используются для исследований межреберных промежутков и сердца.

Секторные фазированные датчики

Применяются в кардиологии. Благодаря секторной фазированной решетке возможно изменение угла луча в плоскости сканирования, что позволяет заглянуть за родничок, за ребра или за глаза(для исследования мозга). Датчик может работать в режиме постоянно-волнового или непрерывно-волнового доплера, т.к. он имеет возможность независимого приема и излучения различных частей решетки.

Внутриполостные датчики

К этим датчикам относятся вагинальные (кривизна 10-14 мм), ректальные, ректально-вагинальные (кривизна 8-10 мм), такой тип датчиков используется в области акушерства, гинекологии, урологии.

Биплановые датчики

Состоят из объединенных излучателей - конвекс+линейный или конвекс+конвекс. При помощи данных датчиков изображение можно получить как в продольном, так и в поперечном срезе. Кроме би-плановых, существуют трех-плановые датчики с единовременным выводом изображения со всех излучателей.

3D/4D объемные датчики - Ультразвуковой объемный датчик

Механические датчики с кольцевым вращением или угловым качанием. Дают возможность проводить посрезовое сканирование органов, далее данные преобразуются сканером в трехмерную картинку. 4D - это трехмерное изображение в режиме реального времени. Дает возможность просмотра всех срезовых изображений.

Матричные датчики

Датчики с двумерной решеткой. Подразделяются на:

  • 1.5D (полуторомерные). Сумма элементов по ширине решетки меньше, чем по длине. Это дает  максимальное разрешение по толщине.
  • 2D (двумерные). Решетка представляет собой прямоугольник с большим числом  элементов по длине и ширине. Позволяют получать 4D изображение и в это же время выводить на экран несколько проекций и срезов.

Карандашные датчики

В этих датчиках приемник и излучатель разделен. Применяется для артерий, вен конечностей и шеи.

Видеоэндоскопические датчики

Объединяют в одном устройстве гастрофиброскоп/бронхофиброскоп и ультразвук.

Игольчатые (катетерные) датчики

Микродатчики для ввода в труднодоступные полости, сосуды, сердце.

Лапароскопические датчики

Представляют из себя тонкую трубку с излучателем на конце. Используется на лапароскопических операциях. В зависимости от модели конец изгибается в одной плоскости, в двух плоскостях или не изгибаться вообще. При помощи джойстика осуществляется управление. В зависимости от модели датчик может быть линейным боковым, конвексным боковым, фазированным с прямым обзором.

Обратите внимание, в сервисном центре ERSPlus Вы можете:   

  • Купить ультразвуковые датчики
  • Заказать ремонт УЗИ датчиков  

Распечатать

Подписывайтесь на нашу группу VK - всегда самая актуальная информация от инженеров ERSPlus

ersplus.ru

Виды УЗИ аппаратов и УЗИ сканеров в современной классификации – назначение, характеристики

Среди всей диагностической аппаратуры в медицине, обладающей свойствами визуализировать внутренние органы человека, УЗИ-аппаратура занимает почетное место – она широко распространена, дает достоверные данные, может применяться для диагностики в любой области медицины и показывает результаты, которые удобны и легки для их прочтения специалистом.

По техническому уровню, определяющему качество получаемой диагностической информации,аппараты УЗИ подразделяются на четыре основные группы:

Эти приборы предназначаются для двухмерного акустического изображения результатов УЗИ в черно-белом цвете.

Простой УЗИ сканер может иметь дополнительные режимы работы — В + М, В + В.

Эти приборы в медицинской среде иногда носят называние дуплексные приборы. В отличие от простых УЗИ сканеров, данные аппараты обладают дополнительными функциями – при помощи допплеровского метода могут оценить скорость кровотока.

Дополнительные режимы работы УЗИ сканера со спектральным допплером — В + М, В + В, В + D (режим дуплексный).

Эти УЗИ сканеры также носят название УЗИ аппаратов с цветовым допплером. Данная группа приборов отличается наличием максимального количества функций. Имея все режимы УЗИ сканера со спектральным допплером, эти приборы обладают возможностью отображать двухмерное распределение скорости кровотока, выделять их цветом на сером двухмерном изображении тканей.

Технические характеристики УЗИ сканеров с цветовым допплеровским картированием

Дополнительные режимы работы УЗИ сканера с цветовым допплеровским картированием — В + М, В + В, В + D (режим дуплексный), В + D + CFM (режим триплексный).

Специализированные приборы УЗИ – это аппараты «узкого» применения в медицине.Они обладают определенным набором функций, предназначенных к использованию в какой-либо конкретной области.

Используется для визуализации всех структур и тканей глаза. Прибор дает результат в виде одномерного или двухмерного изображения.

Это УЗИ аппарат, который имеет возможность измерять частотусокращений сердца плода (ЧСС) при помощи допплеровского метода.

Возможности фетального монитора–измерение (внутриутробно) ЧСС плода, а также оценка (в статистическом режиме) нюансов всех изменений ЧСС.

Данная группа приборов не очень обширна – эти УЗИ аппараты выпускаются довольно редко и имеются не во всех клиниках.

Это УЗИ аппарат для обследования мозга транскраниальным методом. Чаще всего такое обследование выполняют через область виска на черепе.

Данный УЗИ аппарат используется для диагностического обследования пазух – лобных и носовых.

Универсальные и специализированные УЗИ-аппараты имеют отличные друг от друга функции. УЗИ сканеры могут иметь также возможности подключения к ним различных УЗИ датчиков, дополнительных аппаратов и устройств, что дополняет их функции и расширяет возможности использования в той или иной области медицины.

Оцените - (1 оценок, среднее: 5,00 из 5) Загрузка...

www.operabelno.ru


Смотрите также

-->

Онлайн всего: 2
Гостей: 2
Пользователей: 0